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Image analysis was presented by 
Guttman [1953], and two adaptations to 
factor analysis have been made. The 
first is an obvious, natural technique 
involving the same principle as princi- 
ple factor analysis. The second was 
formulated by Harris [1963] along the 
same basic lines used in cononical fac- 
tor analysis. 

Definition. Image analysis is the 
partitioning of the observable random 
vector, X into an image vector, WX, and an 
anti -image vector, (I - W)X. 

X = WX + (I - W)X 
where WX is the minimum squared error 
linear estimate of X such that 

diag W = 0, = the null matrix. 

This is a "natural" partitioning of 
X that separates that part of X not 

explained by 

from that part which is explained by the 
other N - 1 variables, the anti -image, 
corresponds with the factor analysis 
concept of unique variables, but does not 
correspond to the way the model charac- 
terized the unique variables as being 
uncorrelated to each other and to each 
factor, hence 

E(U) = 

Cov(Y,U) = 

Cov(U,U) = D, a diagonal 
matrix. 

Guttman's discovery (that this natural 
partitioning into image and anti -image 
existed) sheds new light on how the 
unique variables of factor analysis 
should be modeled. This will be dis- 
cussed later. Following are some of the 
results of the above definition. 

Theorem. The coefficient matrix W in 
image of X is a solution to the equa- 

tions 
diag W = 

WR = R - D 

for some diagonal matrix D. 

Proof. Presented by Guttman [1953]. 
His development does not require that R 
be non -singular, however, the develop- 
ment beyond this theorem usually does. 
Hence, this is where this development 
diverges from the classical development. 
Some properties of image analysis can 
be derived from this theorem, using the 
Moore -Penrose "pseudoinverse" of a matrix. 

Definition and Theorem. For each 
matrix A there exists a unique matrix A+ 
(called the pseudoinverse of A) such that 

(1) AA +A = A 

(2) A 
+AA+ = A+ 

(3) (AA +)T 
+ 
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(4) (A +A )T A+A 

Property. If X is an unknown matrix 
satisfying the linear system 

XA B 

for constant matrices A and B, then 

(1) the system is consistent if 

and only if BA= B and 
(2) X = BA +A + Z (I - AA +) for some 

matrix Z. Furthermore, 

(3) X + Z (I - +) satisfies 
XA = B for each matrix Z of 
appropriate dimensions. 

A complete development of pseudo - 
inverses can be found in Lewis and Odell 
[1971], Boullion and Odell [1971], or 
Graybill [1969]. 

Property. The covariance of the image 
vector is 

Cov(WX,WX) = W R WT R + DR +D 2D. 

Proof. Assume WR = R - D is consis- 

tent, i.e. DR D. R can be factored 
as 

R = QT Q1 

where [Ai] is a full rank diagonal matrix 

with the positive eigenvalues of R on the 
main diagonal. Q1 is a matrix of eigen- 

vectors respective to the eigenvalues 
of [Xi]. The result may easily be ob- 

tained by matrix manipulation and use of 
the two equations: 

Q1 QT = I 

R+ = QT [Xi]-1Q1 

Definition from factor analysis. The 

diagonal elements of W R WT are called 

the communalities of X. This definition 
of communalities is also in Horst [1965] 
and Rummell [1970] . 

Property. The communalities of image 
analysis are 

communalities = diag (W R WT] = I- 
Proof. R - D = W RT 

= R W 
so 

Hence 

W R WT W (R - D) 

=WR-WD 
= R - D - W D. 

W D= R- D- W R WT 
= - D R +D 

by the above Property. But diag W = 
so 



= diag W D 

= D - diag D R+ D. 

This, then, yields the result. 

There is no general solution to 
Guttman's theorem in the literature. The 
solution for R non -singular is widely 
known, and can be found in Harris [1962, 
1963], Guttman [1954], or Rummell [1970]. 
But no one has presented a solution for 
singular R, and in fact, there are erro- 
neous solutions in circulation (see Fish- 
er [1970]). The following development 
will satisfy this need for a solution, 
and indications are made for deriving 
other, equivalent solutions. 

Lemma. There are no zeros on the main 

diagonal of R +. 

Proof. Let r = rank R, then 

R = Q[Xi] QT 

where [Xi] is an r r diagonal matrix 

of positive eigenvalues of R, and Q is 
an N r matrix of respective eigen- 
vectors. Now 

= 

This may be verified by substituting 

R and R+ into the defining equations 
of pseudoinverse. Now observe that the 

diagonal element of R is 

r 
1 X1) 

j =1 

and each term in the sum is non -negative. 
Therefore each term in the sum 

qj=1 

is also non -negative and the sum is not 

zero. Examine the diagonal element 

of R +. It is given by the sum above. 

Lemma. D(I - R +R) = 0, if and only if 

D diag (I - R +R) = . 

Proof. Follows from I - R +R being 
symmetric and idempotent. 

Notation. Let A diag (I - R +R) = 

(I - diag R +R). 

Theorem. D R +R = D if and only if 

D is of the form D = H(I - AA +) for 
some N N arbitrary matrix H. 

Proof. Rather than find necessary 

and sufficient conditions that D R +R = 
D, necessary and sufficient and condi- 
tions are found that 
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D A = 

The lemma establishes the equivalence 
of the two. The result then follows 
immediately. 

A is a diagonal matrix, hence to 
impose the restriction that D be diago- 
nal, we need only require that H in the 
theorem above be diagonal. This re- 
presents only admissible D's, not solu- 
tions to the original problem. 

A solution is now given to the first 
theorem. 

Theorem. A solution to the system 
of equations 

W R = R - D 

D is diagonal 

diag W = 
is 

I- - AA+)(diag R+)-1R A+(I R R+) 

and 
Do = (I - AA +)(diag R +) 

Proof. Since A is diagonal, Do is 

diagonal. Taking the diagonal of Wo 

it easily collapses to the null matrix, 0. 

Postmultiplication of Wo by R yields 

WoR = R - (diag R +) -1(I - )R R. 

since Do A= then Do (I - R +R) by 

the second lemma, hence 

WoR = R - (diag R +) 
-1 

(I A A +) = R - D 

since diagonal matrices commute under mul- 
tiplication. In general, all solutions 
to Guttman's theorem are of the form 

W = I - H1 (I -A A +) R+ + Hz (I R R +) 

for some H1 and H2 where H1 is diagonal. 

This theorem presents the solution when 
H 

2 
is also diagonal. 

Corollary. In the theorem above, if 
R is non -singular, then the unique solu- 
tion is 

Wo = I - (diag R-1)-1R-1 
and 

Do = (diag R-1)-I. 

Proof. A proof of this is presented 
with each description of image analysis 
in the literature, but can also be seen 
to follow from this theorem by observing 
that A = 

The following two examples demon- 
strate the'factoring" process involved 
in image analysis, and some of the pro- 
blems encountered when using it in any 
data compression technique. Consider 



the two (contrived) correlation matrices, 
R1 and R2: 

1.00 .50 .50 .25 .25 

.50 1.00 .50 .25 .25 
R1 = .50 .50 1.00 .25 .25 

.25 .25 .25 1.00 .50 

.25 .25 .25 .50 1.00 

1.00 .50 .50 .25 .25 .25 

. 50 1.00 .50 .25 .25 .25 

. 50 .50 1.00 .25 .25 .25 

.25 .25 .25 1.00 .50 .50 

. 25 .25 .25 .50 1.00 1.00 

. 25 .25 .25 .50 1.00 1.00 

R1 is a full rank (rank = 5) matrix pre- 
sumably representing five variables, 
say (x1, x2, x3, x5). R2 is a sin- 

gular (rank = 5) matrix representing the 
same five variables as R1, but with a 

sixth variable identical to the fifth: 
x6 = x5. The resulting image covariance 

matrices, G1 and G2, were calculated 

using the last theorem: 

G1 = 

G2 = 

.244 .295 .295 .205 .205 

.295 .344 .295 .205 .205 

.295 .295 .244 .205 .205 

.205 .205 .205 .276 .175 

. 205 .205 .205 .175 .175 

. 205 .205 .205 .175 .276 

.344 .295 .295 .205 .250 .250 

. 295 .244 .295 .205 .250 .250 

. 295 .295 .344 .205 .250 .250 

.205 .205 .205 .276 .500 .500 

.250 .250 .250 .500 1.000 1.000 

.250 .250 .250 .500 1.000 1.000 

Notice that the fifth row and column of 
G1 and G2 differ (although they parti- 

tion the same variable: x5) and the last 

two rows and columns of G2 are identi- 

cal to R2. 

The anti -image covariance matrices also 
show this by the zeros in R2 - G2: 

R1 

R2 G2 

. 656 .205 .205 .045 .045 

. 205 .656 .205 .045 .045 

. 205 .205 .656 .045 .045 

.045 .045 .045 .724 .325 

.045 .045 .045 .325 .724 

.656 .205 .205 .045 0 0 

. 205 .656 .205 .045 0 0 

.205 .205 .656 .045 0 0 

.045 .045 .045 .724 0 0 

0 0 0 

0 0 0 

These examples demonstrate that, 
while the "filtering" process of image 
analysis (X = WX + (I -W) X) does parti- 
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tition the unique part of each variable 
from the linearly predictable part (in 
terms of the other variables), this par- 
titioning is not necessarily a parti- 
tioning of the relevant from the irre- 
levant. Those variables that are 
linear combinations of the others are 
reproduced in the image in their entirety, 
while data compression techniques seek 
to eliminate such variables in order to 
reduce redundancy. 

Some data compression techniques, 
such as image covariance factor analy- 
sis, use image analysis as a conditioning 
filter to partition relevant and irrele- 
vant parts of each variable. The failure 
of image analysis to exclude redundant 
variables may cause the factor analysis 
to deal with some cf the variables 
differently for the non -singular and 
singular cases: e.g. consider x5 in the 

examples above. 
In summary, image analysis was de- 

veloped for singular correlation matrices, 
and an example of how variable dependence 
effects image analysis was presented. 
The author has also developed a mathema- 
tically consistent factor analysis model 
employing image analysis [Pore, 1973, 
1974] in addition to the two mentioned 
in the first paragraph of this paper. 
The examples indicate, however, that if 
a data compression technique is intended 
(as in factor analysis), then great 
care is recommended in interpreting the 
results of pre -conditioning or filtering 
singular data with image analysis. 
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